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The speed of water flowing over the landscape or in a river channel is a major contributor to
geomorphic change, and is crucial for fluvial and basin-scale processes. Here we will cover some
commonly used equations, their inherient assumptions, and their pitfalls.

1. Setting the stage

Before we get started, let’s visualize a river together, complete with its characteristics: its flow
velocity, depth, slope, channel pattern, sediment grain size, etc.

Figure 1. Artist unknown.
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2. Laminar vs. turbulent flow

In Laminar flow, parcels of fluid move smoothly against one another.
In turbulent flow, parcels of fluid swirl around and mix.

Figure 2. Draw schematic sketches of laminar and turbulent flow.

In laminar flow, viscosity dominates over inertia. Conceptually, this means that the dampening
effect of how sticky or sluggish a fluid is will slow down and still the effects of perturbations.
Think about moving your finger through a tray of water. The water might ripple and form vortices
in response. This is because inertia – and turbulence – are dominant here. Now think about the
same exercise in a tray of molasses. The molasses will smear and shear, but will not form vortices
that spin away from your finger. This is because viscosity dominates over inertia.

The Reynolds Number is a dimensionless value that helps us to determine whether a flow will
be laminar (viscous-dominated) or turbulent (inertia dominated)1 It is the ratio of the inertial
forces – those supplying momentum to maintain the motion of fluid parcels – to viscous forces –
those dampening momentum-driven flow:

(1) Re =
ρuL

µ
=
uL
ν

ρ is the density of the fluid, u is the fluid velocity, and L is a length scale. µ is the dynamic viscosity
of a fluid. ν = µ/ρ is the kinematic viscosity of a fluid, which is simply defined as the dynamic
viscosity divided by the density.

• Flow is laminar when Re / 500.
• Flow is turbulent when Re ' 1000.

Between these two Reynolds numbers, flow is classified as transitional: both inertial and viscous
forces are important, and it is therefore more difficult to solve. You may be relieved, then, that we
will not discuss transitional flows beyond this fair warning that they exist!

1The Reynolds Number appears in the Navier–Stokes equation, which is the master equation for fluid flow.
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2.1. Intuition-building questions: laminar or turbulent?

2.1.1. A 1-cm-thick layer of honey flowing down a ramp into the waiting mouth of a hungry bear.
• ρhoney = 1450 kg m−2

• uhoney = 0.01 m s−1

• Lhoney = 0.01 m
• µhoney = 10 Pa s

2.1.2. A 1-cm-thick layer of water flowing down a ramp into the waiting mouth of a thirsty hare.
• ρwater = 1000 kg m−2

• uwater = 0.1 m s−1

• Lwater = 0.01 m
• µwater = 10−3 Pa s
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2.1.3. A 1-m-deep river flowing next to the bear and the hare.
• ρwater = 1000 kg m−2

• uwater = 1 m s−1

• Lwater = 1 m
• µwater = 10−3 Pa s

3. Steady and/or uniform flow

Here, we will focus on the special cases of flows that are both steady and uniform. This helps to
greatly simplify the mathematics and is applicable in many natural environments. What do these
terms mean?

3.1. Steady. Steady flow is flow that is not changing in time. This means that all time derivatives
are set to zero. Mathematically, for any quantity X,

(2)
�
�
�7

0
dX
dt

for steady flow.

Most importantly, there are no accelerations (under the standard definition of accelerations being
change in velocity over change in time).

Strictly speaking, we know that this is not true. Low flows in summer will be slower than high
flows during snowmelt. But compared to the amount of time that it takes for water to travel through a
reach of a river, such changes are typically slow. Exceptions exist, of course, such as flood waves after
dam breaches. These situations require a more complete mathematical description of fluid flow.

Figure 3. Sketch the passage of a flood wave (e.g., from a dam break), and along
with it, the expected thickness and velocity of the flow. Show how this changes
with time. This is not a common situation!
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3.2. Uniform. Uniform flows are not changing in space downstream. Thus, for any quantity X
and a downstream-oriented spatial dimension x,

(3)
�
�
�7

0
dX
dx

for uniform flow.

Most flow in rivers can be approximated as uniform because the river channel changes only grad-
ually downstream.

When considering natural flows, a common case of nonuniform flow occurs when a river ap-
proaches a lake, ocean, or waterfall. This is a zone of spatial acceleration as opposed to the more
common temporal acceleration (which is most commonly called just “acceleration”). In this case,
a single water molecule is speeding up or slowing down as it approaches the waterfall/lake/etc.,
but flow at a single location is steady.

Figure 4. Sketch the examples of a river entering a lake or ocean (so-called “M1
backwater”) and a river flowing over an escarpment to form a waterfall (so-called
“M2 backwater”.

When do we have to worry about the effects of a backwater impacting a river? This backwater
is due to the addition of a pressure force (the excess pressure from the deep lake pushing back
upstream on the water) or the reduction of a pressure force (the free surface over the lip of a wa-
terfall). This can act over the depth of the channel, and therefore ceases to be very important once
the channel is one channel-depth higher in elevation than the boundary producing the backwater.
From this, we define a backwater length,

(4) Lbw =
h
S

where h is the flow depth and S is the channel slope.
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Example 1: A gravel-bed river approaching a waterfall. Minnehaha Creek in Minneapolis is a
gravel-bed stream. Let’s say that its bankfull depth (i.e., the depth of the flow when floodwaters
fill it up to the top of its banks and the very edge of its floodplain) is 1 meter. Let’s also state that
its slope is 10 meters per kilometer, or 0.01. How far upstream of the waterfall would the flow
start accelerating?

Example 2: When the Mississippi River reaches the ocean, its depth is closer to 10 meters and
its slope is closer to 10−4. How far upstream would the backwater effect be felt? From this, are
backwater hydraulics more important to consider in upland or lowland systems?

4. Laminar flow

Laminar flow follows the Navier–Stokes equations for the simplified case in which the viscosity
dominates over the inertia. Assuming that the only force that acts on the flow is from the weight
of the fluid itself, and that the flow is steady and uniform, this simplifies to:

(5) ν
d2u

dz2 = −g

Here, g is the gravitational body stress vector, which is that pulling the flow downslope. We will
solve for it later using the “depth–slope product”. For now, let’s just integrate twice and solve for
the shape of the velocity profile in a laminar flow being driven by gravity across an inclined bed:



OVERLAND AND OPEN-CHANNEL FLOW ESCI 4701: GEOMORPHOLOGY 7

Figure 5. Draw a schematic laminar velocity profile.
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5. Flow velocity fluctuations and intensity of turbulence

From the eddies we discussed above, we might expect laminar and turbulent flow velocities,
and the variability in these velocities, to differ as well. Figure 6, below, illustrates what we
sketched above using a dye trace: imagine a tiny stream of dye injected into the flow to demon-
strate flow paths.

Figure 6. This dye trace remains coherent in the laminar flow reach, but disperses
in the turbulent flow region. What impact do you think laminar vs. turbulent flow
has on the flow velocities or their variations? Figure from MIT OCW, Heidi Nepf’s
1.061 (which I (Wickert) took and greatly enjoyed!), Chapter 7.

A point at the head of the arrow would experience a single, constant velocity. On the other
hand, the velocity at point A (in green) would look something more like this: Here, ū is mean

Figure 7. Reynolds decomposition of turbulent flow at Point A on Figure 6. Figure
from MIT OCW, Heidi Nepf’s 1.061, Chapter 7.

down-channel velocity and v̄ is mean cross-channel velocity. The u and v are instantaneous such
velocities; as you can see, there is no net motion across the channel (v is centered around the x
axis) but there is net motion in the downstream direction. The fluctuations in velocities are due to
turbulence, and are termed u′ and v′. From these, we can write the Reynolds decomposition of the
velocity field, which separates its mean terms from its fluctuations:

u =ū +u′(6)

v =v̄ + v′(7)

These are the definitions of these velocity fluctuations... but what do they mean and why are they
important?

Imagine at a point in the stream how the flow velocity might change as a function of the di-
rection of the eddy passing over it. How might the position of the eddy with respect to the point
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Figure 8. Your sketches of how eddies cause the fluid velocity at a fixed point in
the flow to deviate from the mean velocity (or perhaps not to deviate from this).

change the flow velocity? Take some space to draw it; this is the change that produces the fluctu-
ations:

The intensity of the turbulence scales with what is called the shear velocity or friction velocity,
frequently written u∗ but also written uτ in order to help remind the reader that it is a quantity
that relates to shear in the flow (τ is the typical symbol for a shear stress). We will consider this
next. In order to do so, we need to go through some background on shear stress and what sets
shear stress within a flow. Following this, we can begin to consider how turbulence affects the
fluid velocity profile by mixing momentum through the water column.

6. Shear stress and shear velocity

How does turbulence start? It does when two layers of fluid rub together, creating shear. When
this shear is great enough, it overpowers the viscous forces of the fluids and eventually creates
spirals called eddies that inertially propagate through the flow. These eddies exist at scales from
the total flow depth (or other limiting dimension, but most commonly depth in rivers) down to
the smallest length scales (called the Kolmogorov length scale, but we don’t need to worry about
that here). For those who need a mnemonic, a poem:

Big whirls have little whirls
that feed on their velocity;
little whirls have lesser whirls
& so on to viscosity.

Lewis Fry Richardson
Therefore, to understand turbulent flow and the intensity of turbulence, we must first think of
shear within fluids and shear stress. Conveniently, it is this same shear stress that drives sediment
transport, thereby making this a transferrable bit of know-how.

Above we noted the concept of uniform flow. In the solutions below, we will forget about this
for a bit before returning to it, in order to show how pressure gradients cancel out when the flow
depth stays relatively constant with distance downstream.

The solutions below all include an assumption of steady flow: that is, there are no accelerations
in time. Of course, there will be some local accelerations that are related to eddies and turbulence,
and therefore, geomorphologists often describe this as quasi-steady to indicate that – on average
and on a whole, there is no acceleration beyond local-scale flickers.

6.1. Pressure gradients. In order to understand how shear stresses (alternatively, shear tractions)
develop on the bed of a river, it helps to construct a diagram of a segment of flowing water.
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Figure 9. A segment of river, gratuitously lifted from Kelin Whipple’s course notes
on MIT OCW. Note that the coordinate system is aligned with the channel bed.

Pressure gradients are produced through gradients in flow depth.2

(8)
∂p

∂x
≈
p(x+∆x)− p(x)

∆x
=
ρgh(x+∆x)− ρgh(x)

∆x

Therefore:

(9)
∂p

∂x
= ρg

∂h
∂x

At the bed of the channel, this lateral pressure gradient produces a stress, which we denote as:

(10) τb,pressure =
∂p

∂x
= ρg

∂h
∂x

6.2. Body stresses. Body stresses (or forces) are those related to the weight of a parcel of material.
The weight of the unit block of water is:

(11) Weight(water) = ρgh

We care about the shear stress on the bed, as this is capable of moving sediment, so therefore
combine this weight of water with the trig function for its down-slope component to obtain the
following equation

(12) τb,body = ρghsinα

Because most channels are only gently sloping, we use the small angle formula to approximate:

(13) τb,body ≈ ρghS

This is known as the “depth–slope product”3, and is very important in fluvial geomorphology. It
is analogous to solutions for a block on an inclined plane – with the exception that this solution
is for a single column of water exerting pressure on the bed, and therefore is in terms of stresses
instead of forces.

2Changes in density could produce these as well, but rivers and overland flow comprise freshwater systems with
sediment concentrations low enough that sediment is generally a small fraction of the total flow. Therefore, density
can safely be assumed to be an approximate constant.

3The depth–slope product holds true for both laminar and turbulent flow; it is merely a function of the flow
geometry.
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Figure 10. Small-angle formula reminder.

6.3. Combining the pressure and body stresses. Combining the body and pressure forces:

(14) τb = τb,body + τb,pressure

Solutions for when the pressure forces matter are called the backwater equations, and are im-
portant when flow is accelerating towards a waterfall or decelerating towards a body of standing
water. These are a bit complicated, and we discussed these qualitatively above. As a basic rule
to see whether the backwater effect will be important, you may use a characteristic backwater
length scale (Eq. 4).

This second right-hand term term disappears when flow depth is uniform, thereby leaving us
with just the body forces. Therefore, for most places in most rivers, where we can assume steady,
uniform flow. As a result, our most common equation for the applied bed shear stress becomes
the depth–slope product. Although this is an approximation (S for sinα), I will use an equals
sign from this point forward for convenience.

(15) τb = ρghS

6.4. Shear velocity. Basal shear stress relates to shear velocity – a measure of the intensity of
turbulence in the flow – as:

(16) τb ≡ ρu2
τ

Let’s do the math in the case of steady, uniform flow:

(17) uτ =
√
ghS

This velocity scale relates to the size of the turbulent fluctuations (Fig. 6).
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7. Empirical or semi-empirical “laws” for turbulent overland and open-channel flow

What do we know in general about flow between the land surface and the air? Recall that the
land surface (or channel bed) is a no slip boundary, and that the air is a free slip boundary.

Figure 11. Schematic velocity profile.

Armed with this basic idea about what flow should look like, several engineers created equa-
tions to describe flow.

7.1. Chézy’s Equation. Derived in the 1700’s, originally for pipe flow and adopted to open chan-
nels.

(18) ū = Czuτ = Cz
√
gRhS

ū is mean (depth-averaged) flow velocity. The shear velocity, uτ , is a velocity scale for the amount
of shear stress imparted on the bed and relates to the intensity of turbulent fluctuations in the
flow. Cz, the “Chézy coefficient” is analogous to an inverse friction coefficient: as it goes up, the
flow goes faster. Rh is hydraulic radius (think pipes), and is comparable to h in channels, in which
it is calculated as:

(19) Rh =
A

Lwetted perimeter
≈ A
b+ 2h
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For channels that are much wider than they are deep (i.e. the majority in nature), this is approxi-
mately h, which is simply the flow depth:

(20) ū ≈ Cz
√
ghS

Does this behave properly at the limits of no water in the channel (h = 0) and the channel being
filled to the brim with water (h = hbf, where hbf is the bankfull-stage flow depth)?

Let’s solve for the units of Cz.

(21) Cz = 8.1
(
h
ks

)1/6

(Parker, 1991). ks is a roughness height that will come up again for the Law of the Wall (below). It
is variously given by (e.g., Clifford et al., 1992):

(22) ks ≈ (1.5 to 3)D90 ≈ 3.5D84 ≈ 5.9D50

whereD stands for the particle (grain) size on the bed, and the subscript is the percentile (i.e. 90%
of the grains smaller than the D90). The D50 is the median grain size.

7.2. Manning’s Equation. Manning in the 1840’s observed that Chézy’s Cz is a function of depth,
so he came up with his own equation.

(23) ū =
1
n
Rh

2/3S1/2

(This version of the equation uses metric units.)
Manning’s equation is still extremely widely used, from hydraulic engineering to hydrody-

namic modeling to flood-hazard planning. There is a large literature devoted to determining
“Manning’s n” for different systems.

• Picture books to find what Manning’s n should be! (Harry and Barnes, 1987; Acrement and
Schneider, 1989)
• Tables for this same purpose (just search “Manning’s n table” online)

These known coefficents are solved by back-calculating n in channels of known S, Rh and ū =
Q/A.

(24) n =
Rh

2/3S1/2

ū
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Figure 12. Tabulated Manning’s n values.

Does this behave properly at the limits of no water in the channel (h = 0) and the channel being
filled to the brim with water (h = hbf, where hbf is the bankfull-stage flow depth)?

Let’s solve for the units of n.
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7.3. Darcy-Weisbach equation. From above:

7.3.1. Basal shear stress: friction and definition. Alternatively, one may represent the basal shear
stress by using the roughness and flow-velocity relationships from earlier. Combining the Darcy–
Weisbach friction factor with the shear velocity, one may obtain:

(25) τb = ρCf ū
2

Finally, the definition of basal shear stress is:

(26) τb ≡ ρu2
τ

In the case of steady, uniform flow,

(27) uτ =
√
ghS

and as a result, we again obtain the depth–slope product for steady, uniform flow.
This is the generalized form of the Darcy-Weisbach equation for steady, uniform, open-channel

flow, in which the friction factor is denoted Cf .

(28) ū =

√
gRhS

Cf

Does this behave properly at the limits of no water in the channel (h = 0) and the channel being
filled to the brim with water (h = hbf, where hbf is the bankfull-stage flow depth)?

Let’s solve for the units of Cf .

Empirically (Leopold et al., 1964),

(29)
1√
Cf

=
1
√

8

[
2.0log

(
h
D84

)
+ 1

]
Hint: this equation is one to remember for later in the class, when we discuss shear stress and

shear velocity. Note the logarithmic form of its empirical definition.

7.4. Closing thoughts. You should by algebra be able to derive relationships between each of
these characterizations of flow roughness:

• Cz = Chézy coefficient
• n = Manning’s n
• Cf Dimensionless bed resistance coefficient = C−2

z
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8. Prandtl turbulent mixing and the Law of the Wall

Here we consider a formal approach to the velocity profile in the turbulent boundary layer –
the zone where eddies actively mix momentum and produce velocity gradients. This is a good
approximation to the flow within a whole river channel (and incidentally, for near-surface winds
as well).

Let’s first consider a laminar fluid. Here, viscosity is the constant of proportionality that links
the shear stress to a velocity gradient, which provides a shear strain rate.

(30) τ = µ
du
dz

Let’s draw this out based on a simple experiment in which you move a plate to the right atop
a viscous fluid, on top of a table. Maybe the plate is a cutting board, the fluid is peanut butter
(creamy, so we don’t have to deal with multi-phase – solid+fluid – deformation, which gets tricky!),
and the table belongs to your best friend who told you to keep it clean! This should tell you why it

Figure 13. Experiment to test the viscosity of a fluid by shearing it between two plates.

is important to know the velocity profile – especially considering how important shear stress can
be in moving sediment and eroding bedrock (more on this soon in the course).

I started with laminar flow here for two reasons:
(1) When the flow remains coherent (i.e., in the laminar case), the relationship between stress

and strain rate (i.e., the change in velocity over change in a distance, such as depth) is
straightforward.

(2) Equation 30 forms the basis for an analogous approach towards understanding stress and
strain in turbulent flows:

(31) τ = K
du
dz

In a laminar flow, µ, the viscosity, relates stress to the rate of change in velocity with change in
distance. In Equation 30, this distance is the in the vertical orientation; here we consider these
velocity profiles in terms of vertical distance through the flow depth, from the bed to channel
surface.

In Equation 31, above, we replace µ with K . This new variable represents the fact that there is
a different set of flow properties that transmits momentum within the flow. Recall the definition
of momentum:

(32) momentum =mu

where m is the mass of a fluid parcel and u is the downstream-directed velocity – here we care
about momentum in the downstream direction. In order to visualize momentum in a fluid, it can
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be helpful to decompose momentum into the density of that fluid, ρ, and the volume of the parcel
of the fluid that is being considered, −V :

(33) momentum = ρ −Vu
In a laminar fluid, this is the viscous forces between layers of fluid – you can think of this as the

Figure 14. Downstream-directed momentum of a parcel of a fluid.

fluid analogy of friction. In a turbulent flow, however, fluid momentum overcomes these viscous
forces. What might this mean for the physical meaning of K and the fluid velocity profile?
K scales with the size of the eddies, and is therefore a property of the flow and not of the fluid (as

true viscosity is). The eddies act to redistribute momentum within the flow, moving fast parcels
down and slow parcels up. The efficiency of these eddies in doing so is related to the size of the

Figure 15. Momentum redistribution.

eddies:

(34) K ∝ ρl2 du
dz

= κ2ρl2
du
dz

where l is a characteristic eddy length-scale. κ describes the relationship between turbulent dif-
fusivity K and the physical properties of eddies and the flow. It will become known as the von
Kármán constant, and be very important for the rest of this discussion. Empirically, κ = 0.407.

Near the boundary of the flow, l ≈ z, becuase the bed stops eddies. So...

(35) K = κ2ρz2 du
dz

Therefore, after doing a bit of equation combination:

(36) τb = κ2ρz2
(

du
dz

)2

τb is bed shear stress. We’re going to see a lot of it from here on out!
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Figure 16. Draw eddies near to and far from the wall.

We can also further discuss a new term, defined originally by Prandtl, called the shear velocity:

(37) uτ ≡
√
τb
ρ

This is a scaling that relates to the fact that shear stress, fundamentally, is about the near-wall gra-
dient in velocity – hence, higher velocities in the channel produce higher shear as they approach
the no-slip boundary.

This definition in turn leads us to

(38) uτ = κz
du
dz

Let’s rearrange this Prandtl mixing theory equation to give us a velocity profile.

(39)
du
dz

=
uτ
κ

1
z

This is showing us how momentum mixes vertically by eddies to affect the velocity profile in a
turbulent fluid.
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Now let’s integrate this expression to obtain something that gives us velocity instead of velocity
gradient:

This final expression is the Law of the Wall.

(40) u(z) =
uτ
κ

ln
(
z
z0

)
z0 is a roughness length scale, or roughness height. It sets the elevation above the bed at which

the turbulent velocity profile reaches zero, though this is ficticious. In reality, there is a laminar
sublayer beneath the turbulent profile, and z0 is not particularly physically meaningful. Further-
more, this logarithmic profile is strictly only true for the first ∼20% of the distance from the bed
to the water surface. Nevertheless, the logarithmic profile is a good approximation for flow in an
open channel.

8.1. Finding z0. The value of z0 depends on whether the flow is hydraulically smooth or hydrauli-
cally rough.

Recall the Reynolds Number:

(41) Re =
ρuL

µ
=
uL
ν

L is a length scale and ν = 10−6 is the kinematic viscosity of water.
We can use it to define whether the flow will be hydraulically rough or hydraulically smooth.

Based on Nikaradse’s data/diagram:
• Hydraulically smooth: Re < 3
• Hydraulically rough: Re > 100

From the Equation 22, you can calculate a roughness length, ks, as a function of grain size, D. This
becomes the length scale relevant for determining the near-boundary shear Reynolds number:

(42) Reb =
uτks
ν
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From this we can define z0. For hydraulically smooth flow:

(43) z0 =
ν

9uτ
Pretty much all natural rivers are hydraulically rough, however, so this case is more important to
us:

(44) z0 =
ks
30

Based on the earlier relationships between grain size and ks (Equation 22), one can find a
straightforward linear relationship between z0 and grain size. For those interested in further
reading, these relationships are based on the experiments of Nikuradse (1933).

9. Summary and next steps

Here we have:
• Computed flow and shear stress within an open channel for both laminar and turbulent

flows
• Gained insight into how viscosity and momentum affect the form of flows
• Become familiar with some standard equations and terminology used with open-channel

flows
With this as a starting point, we will begin to study how these flows move sediments, form

river channels, and evolve landscapes in ways that interact with the surrounding hillslopes and
encompassing watersheds.
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